
IPv6 Site Multihoming Using a Host-based Shim Layer

Pekka Savola
CSC/FUNET, Finland

psavola@funet.fi

Abstract

Site multihoming is the process of an end-site, such as an
enterprise, to obtain simultaneous IP connectivity from mul-
tiple ISPs, done for a number of reasons, such as increased
resilience against failures. A new IETF working group was
chartered at the end of June 2005 to work on designing an
IPv6 site multihoming solution.

A prevailing approach, called “shim6”, inserts a shim
layer between the IP and transport layer. Sites have
to deploy multiple provider-assigned IP address prefixes
from multiple ISPs on hosts, instead of a single provider-
independent prefix. These IP addresses (“locators”) are
used by applications and if a session becomes inopera-
tional, shim6 can switch to using a different address pair.
The switch is transparent to applications as the shim layer
rewrites and restores the addresses at the sending and re-
ceiving host. The solution has been designed with ease of
deployment and transition in mind, and changes in typical
applications are not required.

We describe and analyze this solution, and as the design
is still in progress so we note and analyze many open issues.

1. Introduction

Site multihoming is the process of an end-site, such as
an enterprise, to obtain simultaneous IP connectivity from
multiple ISPs. This is done for a number of reasons, such
as increased resiliency against failures (see more of the mo-
tivations in [24]).

Site multihoming with IPv4 is typically achieved by
routing (with Border Gateway Protocol, BGP) or using Net-
work Address Translator -based mechanisms [24]. While
using BGP might scale up to a certain extent, it is an unsuit-
able mechanism for every site’s needs particularly because
it requires that every site is visible in the global routing table
[23, 24].

IPv6 address allocation policies and BGP advertisement
prefix length filters have so far restricted the allocation of
address space in such a manner that BGP-based IPv6 site

multihoming has not been feasible. The hope has been to
avoid creating a similar routing table “swamp” as exists to-
day with IPv4 to maintain future scalability.

At the same time, IETF IPv6 Site Multihoming (multi6)
working group [14] has explored the design requirements
for the multihoming solution [1], threats [22] and architec-
tures at depth. In late 2004, consensus emerged that a par-
ticular solution, called shim6, should be developed in a new
dedicated working group.

The multihoming solution proposals have been surveyed
and compared in previous studies (e.g., [24]). That pa-
per also provides background to the multihoming problem
space. For the sake of brevity, we do not repeat that here.

In this paper we provide a summary, analysis, and eval-
uation of the current proposal. As the IETF shim6 working
group was chartered at the end of June 2005, this paper is
very timely in bringing the reader up to speed with the latest
developments in this area.

Unless stated otherwise, the paper represents only the
author’s personal working group member point of view.

2. Structure of the Paper

We assume prerequisite knowledge of the identi-
fier/locator split concept (e.g., [19, 7]) and the background
and motivation to IPv6 site multihoming proposals (e.g.,
[24]). In the sake of brevity and avoiding duplication of
work, we do not repeat or summarize that work here.

This paper is organized as follows.
The first section very briefly describes and refers to the

background of IPv6 site multihoming work. This section
describes the prerequisites for understanding this paper, and
outlines the structure of this paper. The third section de-
scribes the generic issues with hosts having multiple ad-
dresses from different providers, in order to gain non-shim6
specific background to the problem space. The fourth sec-
tion describes the summary of the shim6 proposal. The fifth
section provides explicit analysis and discussion on a num-
ber of larger issues. The sixth section provides conclusions.

The focus of this paper is providing a concatenated
overview of the proposal, and discussing and analyzing the

1



most interesting and relevant design choices and options.
While the paper should be read in sequence, an impatient

reader may start by taking a quick overview of the protocol
in Section 4.

3. Multiple Addresses on Each Host

The shim6 proposal assumes that multihomed sites ob-
tain multiple IP address prefixes, one from each ISP the site
has connectivity to. These IP addresses are then deployed
on each node which should be capable of multihoming.

This has a number of important implications which we
need to discuss briefly first. When a failure occurs at a mul-
tihomed site,

1. the site should be able to initiate new sessions (internal
or external),

2. hosts in the Internet should be able to initiate new ses-
sions to the servers and hosts at the site (if any), and

3. the existing sessions (internal or external) should con-
tinue to work without disruption (“session survivabil-
ity”).

Ingress filtering restricts the set of addresses that can be
used for new or established sessions. First in Section 3.1
we describe these prerequisites, and then look at source ad-
dress selection in Section 3.2. The third goal is fulfilled by
session survivability, which we discuss in Section 3.3.

3.1. Ingress Filtering

The host must choose the source and destination ad-
dresses properly and the site’s border routers must forward
the packets appropriately to pass the ISPs’ ingress filtering.
That is, packets with the source address from ISP A’s ag-
gregate prefix must be forwarded on the link to ISP A, and
similarly for ISP B’s prefix [6]. This implies source-address
based policy routing (with a very simple policy) at the bor-
der routers, where all the border routers must connected ei-
ther physically or through a tunnel. [12, 24]

When an ISP, a link to an ISP, a border router or some
other network component fails, the prefix assigned from that
ISP’s aggregate route typically ceases to work, because the
only path where the prefix would pass ingress filtering just
became unusable. This problem can be worked around by
using tunnels to build backup connectivity to each ISP [10],
which also would obviate the address selection and session
survivability issues.

3.2. Address Selection

For hosts at a multihomed site to be able to initiate new
sessions after a failure, the hosts need to be able to select a

source address which works between the source and the des-
tination. For a typical external failure, it is enough to pick
the source address from the working ISP’s prefix. More
complex failure scenarios, e.g., where some destinations
work only through one ISP and others via another, would
require more fine-grained prefix selection methods.

For hosts in the Internet to be able to initiate new sessions
to the hosts at the no-longer-fully-multihomed site, (1) they
have to find a working destination address (typically from
DNS), and (2) the responding host needs to be able to pick
a working source address in the response packets. [11]

Sometimes (2) is implied by (1): for example, the TCP
SYN-ACK source address must be the same as the initiator
chose as the destination address; in these cases the address
pairs must be working bidirectionally. Many protocols do
not have this address selection requirement, and the com-
munication may also work with unidirectionally working
address pairs. (See Section 4.5 for more.)

Destination address selection [8] goes through all the IP
addresses in a certain order if the application has been de-
veloped in a proper manner; almost all the IPv6-capable ap-
plications do so, due to having to support both IPv4 and
IPv6 [25].

So, the specific requirements are:

• Destination address selection needs to be quick and re-
liable in cycling through all the addresses, and

• Source address selection must try multiple addresses,
instead of using just one.

Unfortunately, the fallback to the next address is not nec-
essarily quick or reliable. Network elements may end up
discarding packets without sending any indication to the af-
fected hosts that the particular address (through this path)
does not work. In fact, this is rather common – we observe
that ingress filtering typically does not send packets because
failing packets assumably have a forged source address and
doing so wouldn’t help. Further, ISP’s aggregate prefix is
often installed as a discard route, and when a more specific
site prefix goes missing, the packets are just silently dis-
carded. Sometimes, however, an ICMP unreachable mes-
sage is sent, but while the mechanisms exist to take these
into considerations, a subset of errors often aren’t [9]. So,
the application would have to rely on the transport proto-
col timeouts to notice that the communication did not start
properly, and this can take even minutes per tried address
[9].

There are proposals to improve source address selection
to retry [11], but such a mechanism will also need to deal
with the the fact that there may not be any feedback from
the network on failing attempts. It is also not clear which
component of the stack should perform the retries; presum-
ably this could be done as part of the getaddrinfo() loop for
applications which don’t bind to a specific address.

2



Another mitigation technique applicable in most failure
modes is trying to withdraw the non-working prefixes from
being used as soon as possible; for source address selection,
they might be marked Deprecated thus being less preferred;
for destination address selection, they might be removed
from the DNS. However, we note that these have some ob-
vious issues: marking a source address requires information
that it no longer works and updating DNS dynamically for
temporary failures might be very impractical (ignoring the
operational challenges of DNSSEC key provisioning) and
the old data would still persist in the DNS caches for the
lifetime of the record’s previous TTL.

3.3. Session Survivability

Session survivability is a more difficult problem because
the existing protocols such as TCP and UDP can’t switch to
using different addresses while preserving the session.

Stream Control Transmission Protocol (SCTP) provides
this functionality but would have significant deployment
hurdles for the generic use; in any case, the IETF multi6
WG decided that the right place to fix this is below the trans-
port layer. [24]

Address selection must also be performed when switch-
ing a session to use a new address. The fact that the session
has already been successfully established before the failure
mitigates the generic selection issues slightly. In particular,
we conclude:

• Already having an established session allows pre-
emptively probe or test alternative address pairs, and

• Such testing does not need to be done for short-lived
sessions, meaning less packets and bytes sent.

3.3.1 Security of the Session Survivability

Being able to redirect a session between two addresses to
use different addresses has significant security threats [22].

Because a global trust infrastructure does not exist, the
designs have had to cope with a different trust model. [22]
studied how plaintext communications may be disrupted as
of today. Currently, if an attacker is on the path between a
source and the destination (or attached to the same link at
either end), the attacker can typically eavesdrop and usually
redirect communications. The security of the shim6 solu-
tion must not be worse than that; therefore shim6 does not
need to be secure against attackers which are on the path for
the entire duration of the attack.

In the examples below, we have hosts A and B, and an
attacker X. The main redirection threats are similar to Mo-
bile IPv6 (MIPv6) binding update security, but in general
caused by the identifier/locator separation. The threats and
some fixes are [22]:

1. The attacker could claim that A’s new location is at his
address or at an unroutable address; the ownership and
reachability of the IP address must be verified first,

2. The attacker can redirect packets if it can be on the path
for a while and then move out and continue the attack;
there must be an upper limit how long the on-the-path
verification is valid, and

3. The attacker on a slow link could subscribe a large
transmission from A to himself, then start flooding by
redirecting the session to B; one must not use a new
locator until its ownership is verified first.

Mobile IPv6 design introduced a periodical return
routability test: by sending a nonce to the correspondent
node (CN), and being able to show in the further messages
that the mobile node has received a reply (with a secret
nonce of CN’s choosing), the mobile node is able to prove
that it has an address or is at least on the path where the se-
cret was exchanged. Sending a similar packet to the CN
through Home Agent proves the relationship and owner-
ship of the home address, because otherwise the home agent
would not forward the mobile node’s packets.

While the MIPv6 security design could address the redi-
rection threats, unfortunately it does not quite work with
multihoming. MIPv6 relies on home agent and home ad-
dress always being reachable – multihoming design cannot
assume that. All the prefixes used by the site are equal, and
any of them could fail. Periodical return routability tests
could guarantee the safe redirection until the maximum re-
turn routability lifetime1 expires (7 minutes), but most mul-
tihoming outages last much longer than that. As the return
routability would no longer work after the failure, even ex-
tending that maximum would not solve the most fundamen-
tal long-term failure scenarios and would increase the po-
tential damage of temporary on-the-path attacks.

Finally, to ensure privacy, it is important for the hosts
to be able to have multiple identifiers. The protocol itself
must also be resistant to denial-of-service attacks, i.e., defer
creating state or performing expensive operations until the
sender has proved its genuine desire to communicate.

3.4. Conclusions

We draw some conclusions at this point, as these have
impact on the shim6 design:

• If tunneling [10] can be used, session survivability and
address selection work; typically only ingress filtering

1The lifetime ensures that if an attacker manages to be on the same
LAN or on the path between the sender and the receiver, but then moves
elsewhere, after the maximum lifetime it can no longer redirect communi-
cations.

3



requires configuration at the border routers. However,
we do not assume this solution is present.

• The applications and stacks need more robust mech-
anisms to fall back to the next address, also work-
ing when there is no feedback from the network [15].
Source address selection must support retries as well.
Otherwise reliable address selection is impossible.

• Mechanisms to remove or deprefer the non-working
choices would be very useful as they would mitigate
the simplest failure modes of the fallback problem;
however, these have certain big issues such as the in-
feasibility of using DNS for quick updates.

• As a result, address selection (and to a much lesser
degree, ingress filtering) is a very difficult problem for
a host to solve entirely on its own. However, hosts
being able to have “dialogue”, possibly in conjunction
with session survivability, with other network elements
or their correspondents might help them in isolating
the problem and doing better selection.

4. A Host-based Shim Layer

The proposal defines a new virtual layer, “shim”, at the
IP layer, below Fragmentation, Reassembly and IPsec pro-
cessing (see Figure 1 [21]). When a failure occurs, the IP
addresses used by the applications (ULIDs) stay the same,
while the shim translates the packets to use different ad-
dresses at egress and rewrites them back at ingress (see Fig-
ure 2 [21]); the mapping is therefore reversible [21]. Fur-
ther, as all the state is stored at the fate-sharing endpoints of
a session, this approach is fully compliant with the Internet
end-to-end principle.

multi6 shim layer

IP routing
sublayerIP

AH ESP
Frag/

Reass.
Dest

Options

Transport protocols (TCP, UDP,...)

sublayer
IP endpoint

Figure 1. The placement of the shim

Our analysis is that shim6 only provides session sur-
vivability. Additionally methods for address selection and
ingress filtering management need to be enhanced. The so-
lution does not provide provider independence (and conse-
quently, does not eliminate the need for renumbering) or
traffic engineering [24]. This is discussed at more length in
Section 5.3.

One of the most important goals of shim6 design has
been easy deployability. We discuss this separately in Sec-
tion 5.5.

src ULID(A)=L1(A)
dst ULID(B)=L1(B)

src L2(A)
dst L3(B)

src ULID(A)=L1(A)
dst ULID(B)=L1(B)

src L2(A)
dst L3(B)

Upper layer protocol

multi6 shim multi6 shim

IP IP

Sender A

Internet

path over the

Upper layer protocol

Receiver B

Figure 2. The shim mapping with changed lo-
cators

4.1. Interaction with Applications

An important fundamental design choice of shim6 has
been that it requires no changes in most applications, even
when the session survivability is needed.

Applications use IP addresses as identifiers in many
ways: client/server (short- or long-lived), referrals (host A
contacts host B, which says to talk to host C), callbacks
(Host A contacts B, B sometime later contacts A using the
same identifier), or for identity comparison (Host A con-
tacts B, B stores A’s identity; later when a host contacts A,
B compares the identities to see if they are the same). [20]

There are multiple choices on what the applications
could use as identifiers of a session [20]:

• An IP address (like today),

• A special non-routable identifier, from a different
name space (like in Host Identity Protocol),

• A hostname or some other identifier string, or

• (Somehow compiled) list of all the possible IP ad-
dresses.

The key difference lies in how the application can han-
dle referrals and callbacks. If the identifier is a routable IP

4



address, these could work just fine, as long as the IP address
works. On the other hand, if the identifier comes from a dif-
ferent kind of name space, there would have to be a way to
map both ways between locators and identifiers; this is chal-
lenging especially if the name space is flat like in HIP [18].
More deployment considerations are listed in Section 5.5.

The use of hostnames or similar rendezvous tags could
be beneficial because it would ensure applications know all
the locators of a host, thus requiring no mapping functions
(in addition to the resolution of names itself) at all. The list
of all IP addresses would have similar benefits, although
the list would not have temporal flexibility in case the list
of locators changes often. However, as these would re-
quire application modifications, we do not consider these
approaches very attractive in the short term.

Shim6 does not introduce a separate identifier name
space, but uses the IP addresses (locators) of the host as
upper-layer identifiers (ULIDs). Therefore applications us-
ing referrals and callbacks require no up-front modifications
prior to shim6 deployment. However, to be able to use such
applications in the event of a failure, the nodes may need to
find a way to obtain a listing of alternative locators. This
requires enhancing the Application Programming Interface
(API), and a way to perform this mapping; as IP addresses
are used as ULIDs, and they are allocated in a structured
manner, obtaining the list using a reverse and forward DNS
lookup might be possible (see Section 5.4); there may be
other alternatives [20].

A relatively small drawback of using existing locators as
ULIDs are issues with mobility and renumbering, as elabo-
rated in Section 5.1.

4.2. Capability Detection and Multihoming
Timing

Detecting shim6 capability and establishing the multi-
homing state (e.g., the information about locators) are very
important and somewhat interreleted topics.

The naive approach for detection and establishment
would be to insert a special DNS records for ULID or lo-
cators; the resolver would first try to look up those, and if
successful, start the shim6 negotiation.

While this is necessary for approaches using separate
name spaces such as HIP, shim6 gets away with just using
the AAAA records because the locators and identifiers are
indistinguishable and there is no particular reason to be able
to tell them apart.

Therefore there is no need to detect shim6 capabilities or
establish any multihoming state prior to starting communi-
cations with a node. We explore this issue below.

4.2.1 When to Detect or Establish Multihoming

With shim6, the hosts can start sessions as if they were sin-
glehomed or didn’t implement shim6 at all – the shim6 pro-
tocol negotiation can happen later in the lifetime of a ses-
sion, measured based on some policy (for example, number
of minutes connected, bytes transferred, etc.).

That is, in most cases it may not be worth the packet
exchanges and added overhead to negotiate shim6 capabil-
ity for all the sessions (including, e.g., quick one round-trip
UDP messages) as the chance that a failure occurs during
such exchanges and is serious enough is very small.

Being able to delay the set-up of multihoming state thus
enables policy control on how aggressively the site wants to
protect against failures. We consider this a unique property
in the sense all the other protocols for session survivabil-
ity seem to require up-front negotiation of the state and/or
application modifications.

The state needs to be established before failure occurs,
though. This is required to ensure security between the ini-
tial and additional locators, as described in Section 4.4.

4.3. Establishing the Multihoming State

The multihoming state needs to be exchanged in a se-
cure manner. A four-way handshake allows protecting the
receiver against denial-of-service attacks [5].

It is still an open issue how to actually design the ex-
change – whether as an extension header, destination option
in the packets, or using TCP, UDP or some other protocol.
The former two could be carried inside the data frames, with
the cost of decreasing the MTU for the “piggybacked” pack-
ets. In addition to the packet size issues, there are various
other concerns, mainly:

• How well the packet can be processed by intermedi-
ate nodes, e.g., firewalls (the firewalls may not know
the format of the extension header, but the destination
options format is predefined), and

• How simple it is to implement and use; destination op-
tions can be placed in many places in the IPv6 header
chain, and the ordering of options inside the options
header is not specified.

The protocol obviously has to exchange the list of ad-
ditional locators. These locators need to be secured, e.g.,
using means described in Section 4.4.

There are a couple of interesting open design points
about the state exchange:

• Whether to always exchange all the locators or just
some (differential vs atomic)? – To avoid a combi-
natiorial explosion, we believe it is best if the host
would never tell more than a couple of locators to a

5



peer. Therefore the list could be exchanged at once,
also avoiding synchronization issues with differential
exchanges.

• Does the list need to be periodically refreshed? – We
believe that is not necessary, as only the endpoints
share the state. If the peer reboots, the multihoming
state is not useful anymore in any case.

• How does one close the multihoming state (inform the
peer vs quietly)? – While quiet removal might allow
the peer to relinquish some state (e.g., flow label reser-
vations), there does not seem to be a particular need to
ensure that the state should be explicitly dismantled.

We summarize the different data that may need to be
passed in the multihoming protocol in Table 1.

Table 1. Summary of Multihoming State
State Size Section
List of host’s locators at least 32 bytes 4.3
Security data structure at least 100 bytes 4.4
HBA Signature at least 40-50 bytes 4.4
Public key (for CGA) 100-500 bytes 4.4
Address pair pref. 1 byte 4.5
Context tag (if needed) 4-6 bytes? 4.6
Flow label to be used2 4 bytes 4.6.1

4.4. Secure Locator Exchange

In Section 3.3.1 we described generic threats with mul-
tiple locators and why just using return routability is not
sufficient to obtain security of locator changes. Here we de-
scribe the security model, the security building blocks, and
how to secure the locator exchange.

4.4.1 Authorization without Identification

Locator changes require protecting against identity spoof-
ing. Specifically, the host must be able to ensure that if it
starts communicating with a peer (say, “A”), only peer A is
allowed to add or remove locators for the peer.

On the other hand, the host is explicitly not required to
strongly or even weakly identify peer A prior to starting the
communication. This intentional lack of authentication is
not a completely new paradigm, and has been employed in
SSH host key databases and “Better-than-nothing Security”
model as well [13].

This has the major benefit of not requiring public key
infrastructure, but exposes the hosts to man-in-the-middle
(MITM) attacks when establishing a session. However, as

launching such MITM attacks is possible for cleartext com-
munications without the multihoming protocol as well, this
has been found to be an acceptable security tradeoff.

The protocol still needs to ensure protection against 3rd
party flooding attacks and temporal on-the-path attacks, i.e.,
issues 2 and 3 of Section 3.3.1. As described below, these
can be addressed e.g., by sending light-weight reachability
test packets.

4.4.2 CGAs and HBAs

Cryptographically Generated Addresses (CGAs) provide a
means to encode a public key in the 64-bit interface iden-
tifier of the IPv6 address [3]. The receiver can verify that
only the owner of the corresponding private key could have
signed the messages.

Hash Based Addresses (HBAs) [4] is an extension of
CGAs. The list of prefixes (along with a public key or a
random number) is similarly encoded in the interface iden-
tifier, so when a prefix is added3, all the addresses need to
be changed.

Both approaches provide authorization without identifi-
cation. CGA requires heavier cryptographic operations but
is more flexible than HBA because the addition or removal
of a prefix does not require changing all the addresses. An
address can also have both CGA and HBA properties.

The strength of CGAs and HBAs is O(259+16∗Sec),
where Sec is a security value, 0-7. An attacker would need
to launch a brute-force attack to find a data structure which
includes the hijacked and target prefixes. This would allow
redirection of an IP address to a (random) HBA address in
the target prefix. We assume HBA/CGA addresses are suf-
ficiently strong. [4]

HBA or CGA do not prevent Man-in-the-Middle
(MITM) attacks, but require that the attacker must be on
the path when the data structure is exchanged and stay on
the path for the duration of the attack. That is, the attacker
must be able to change the interface identifiers of addresses
used in the session (in addition to the data structures and
signatures). [4]

HBAs do not provide protection against third party
bombing against a subnet. That is, the attacker X can initi-
ate communications with host A, generating HBA addresses
including the prefixes of both X and target B, and redirect
the session to a (random) HBA address of prefix B [4]. Sim-
ilarly, CGAs do not provide protection against third party
bombing against a host of attacker’s choosing.

Addressing third party bombing requires either a return
routability check before the locator is used for communica-
tions [4], or requiring that the sender of the locator update
shows a certificate (one that the recipient can verify) that

3It is not strictly required to change the addresses at prefix deletion,
because leaving it in is doing no particular harm.

6



the sender “owns” the prefix. As the latter requires a sig-
nificant trust infrastructure, we conclude that using return
routability is likely going to be a simpler choice.

4.4.3 Securing the Locator Exchange

Securing exchanging the list of locators (or securing a later
change of locators) requires that the shim6 protocol is used
to pass the data structure, and the message is signed using a
CGA signature. The receiver has to store the data structure
for as long as the multihoming state persists between the
prefixes, and verify the signature. All the further locator
changes must similarly include the data structure and must
be signed.

With more mobile scenarios, it may be useful to use only
CGAs, to avoid the need for renumbering all the addresses
when a prefix changes. If one wants to support adding new
locators on the fly, the addresses must support CGA by in-
cluding the public key in the address generation. In this case
using CGA+HBA allows for easy verification with HBAs
in stable conditions, but authorizes the addition of a locator
with the exchanged public key as needed.

An open question is how the message is signed and the
message is sent, as CGAs are specified only for link-local
Neighbor Discovery. If building an ad-hoc IPv6-in-IPv6
tunnel between the endpoints is not an option, the CGA
mechanism would need to be retrofitted to a destination op-
tion, extension header, or some other means of communica-
tions. This requires changes to the code though – and has a
potential IPR issue: there have been patent applications on
CGAs, but free use has been granted for the current spec-
ifications. Augmenting CGAs to use something other than
Neighbor Discovery might get these issues back on the sur-
face.

4.5. Network Failure Detection and Reac-
tion

As we described in Section 3.2, relying on the input from
the network to achieve quick and reliable address selection
did not seem like a good idea. Similarly, when a failure
occurs, depending on the network to somehow “report” the
error (instead of just discarding the packets) to the session
endpoints is not robust. These can still work as optimiza-
tions, but more generic failure detection and reaction meth-
ods are needed.

The proposal [2] is to select one primary address pair
for each session. Presumably this is the one used to set up
the session, before the multihoming context has been set
up. However, it is possible that the multihoming state is
created between hosts, and later additional sessions would
need to be established. If necessary, the peer could tell in the
shim6 exchange which addresses should be preferable in the

future. If so, some kind of interface to the default address
selection rules would be needed. We do not see this as a
strict requirement: if the host would have so many addresses
that choosing among them would be difficult, the simplest
approach might be not telling the peer about a subset of
addresses [2].

There is plenty of reachability information available
scattered through the protocol stack. At least the follow-
ing information could be used to monitor the operational
address pairs [2]:

• Positive feedback from the upper layers; for example,
TCP connection is progressing.

• Negative feedback from the upper layers; for example,
TCP is not getting ACKs.

• Lower layer information; as this information is not
end-to-end, it can only provide reliable negative feed-
back about sessions using a failed local component.

• Reachability tests; mechanisms done by the failure de-
tection protocol.

• ICMP error messages; for example, certain ICMP er-
rors designate persistent failure scenarios.

A good question is which part of the protocol stack
should deal with the end-to-end failure detection. It would
seem best to make the shim6 failure detection aware of the
transport protocol specific information, in the same way that
lower-layer local indications (link up/down, IP address op-
erational, etc.) can be used as input.

It is important to realize that some address pairs may
only work in one direction, i.e., being able to receive with
(src=A1, dst=B1) does not mean that responses would nec-
essarily get back; they might need to use a different address
pair, like (B2, A1) (see Figure 3 [2]). This needs to be taken
into account when designing the failure detection protocol.
The case when there exist only unidirectionally operational
address pairs is also theoretically possible [2]. However we
believe having to deal with them should not be required for
stable conditions, possibly only for session survivability, as
establishing a TCP session requires a bidirectionally work-
ing address pair.

An important consideration is how the secondary address
pairs should be selected. Assuming two hosts A and B had
two addresses each, one could consider the following:

1. Try the address pair that diverges the most from the
currently used first; this should be able to deal with a
failure at either end.

2. If there is indication that most sessions still work, the
failure has typically been at the remote site.

7



X

X

Poll 1 (src=A1, dst=B1)

Poll 2 (src=B1, dst=A1) OK=1

Poll 3 (src=A2, dst=B1)

Poll 4 (src=B2, dst=A1) OK=1

Poll 5 (src=A1, dst=B1) OK=4

Peer A Peer B

Figure 3. Detecting unidirectional failures

3. Otherwise, the local locator should typically be
changed first; this addresses cases such as source ad-
dress selection not being able to retry (see Section 3.2),
ingress filtering, or an address no longer being locally
operational (e.g., link down).

4.6. Multiplexing and Demultiplexing

When a failure occurs, the IP addresses used by the ap-
plications (ULIDs) stay the same, while the shim translates
the packets to use different addresses at egress and rewrites
them back at ingress. This is called multiplexing and de-
multiplexing. [21]

This is challenging because the parties must ensure the
mapping is reversible; in particular, the receiving host must
the able to distinguish which multihoming context (between
the host and different peers, or multiple contexts between
the same peers) each packet belongs to. At worst, inap-
propriate demultiplexing could result in corrupting the data
stream with unrelated packets, so demultiplexing must be
done with care. [21]

Two main approaches have been proposed: using the
Flow Label field (in one of several ways) or defining a spe-
cific destination option or extension header to carry an iden-
tifier. We’ll explore these below.

There are also some packets, specifically ICMP packets,
which are sent in the network in response to a data packet,
including the rewritten IP addresses in the payload. The
demultiplexing function must therefore capture such ICMP
messages, translate them accordingly, and pass them up in
the stack. [21]

The typical assumption in the design has been that the
peer must be notified prior to starting to use a different lo-
cator, so that the demultiplexing can succeed. However, we
could imagine that it would be possible to “piggyback” that
notification on the packet sent using the new locator as long
as that packet (1) includes sufficient security information,
and (2) carries the multihoming state update.

4.6.1 Flow Label vs Explicit Tag

Obviously, identifying is trivial when no multihoming con-
text has been set up. As a host cannot know when a failure
occurs, it needs to be ready at all times after the multihom-
ing state has been established. Thus the labels/tags need to
be agreed on, even if they would not need to be used, prior
to the failure.

It is also important to remember that the operating sys-
tem kernel already knows how to demultiplex (non-shim)
packets; this is done by IP addresses and TCP/UDP port
numbers, and in some cases, using other mechanisms.
These could potentially used as well. However, this does
not help in cases where such information is not available.
We also note that this assumes that the port number space is
unique across all the IP addresses: on a single host, appli-
cation 1 cannot use the IP address A1 with the same port as
application 2 with IP address A2.

If flow label (which is unique across {srcIP, dstIP, flow})
could be used, it would have two main advantages:

• no packet size increase, which could have potentially
led to fragmentation and PMTUD problems, and

• no complications with firewalls or packet filters, which
might not be able to parse or jump over a new header
or option.

On the other hand, using an explicit tag would also have
advantages:

• potentially simpler design because the tag allocation
mechanisms can be defined as deemed fit, and

• would not use the flow label field; shim6 use might
place (minor) constraints on the future use of the flow
label.

For flow label design is still open, but there are at least
two main candidates:

1. Sender-based allocation and reservation, and

2. Receiver-based allocation for backup locator pairs.

In the former, proposed by us, when the flow label is cho-
sen, the particular label is reserved until the host runs out of
flow labels. In particular, the label must be reserved so that
it won’t be used to communicate with the other addresses
in the peer’s locator set (current or future). Thus when the
failure occurs, the sender can just switch to using different
source and destination locators while preserving the flow la-
bel. The receiver may have other peers which have chosen
(at random) to use the same flow label, but as the receiver
knows the locators of the sender through the shim6 proto-
col, it can unambiguously demultiplex the packets. Hence,
the flow label for shim6 would need to be unique across

8



{source locator set, destination locator set, flow label}. The
main issue with this appears to be whether we need to deal
with the case of running out of the 20-bit flow label space;
it may or may not be feasible to assume a host would need
to have a million concurrent sessions4.

In the latter, establishing the multihoming context trig-
gers the reservation of a flow label for the backup address
pairs. This allocation would be done by the receiver, be-
cause the receiver just needs to choose it so that it is able
to perform the demultiplexing. The flow label reservation
would be communicated in the multihoming exchange, and
would be used by the shim only if a failure occurs when
rewriting the packets at either end.

A minor downside with all the session survivability ap-
proaches is that if flow label would also be used in Quality
of Service or some other use, the signalling for a different
treatment of {src, dst, flow label} would need to be done
again. With the former approach, the routers could, if they
were shim6-cognizant, snoop the shim exchanges and set
up the state automatically as well, but this would be an ar-
chitecturally bad idea.

5. Further Analysis and Discussion

Previous Sections already include quite a bit of analy-
sis and discussion, but a few lengthier topics deserve to be
analyzed separately, in subsections below.

5.1. Multihoming vs Mobility

The multihoming and IP mobility5 both require session
survivability, and the question is often raised why not create
a solution that solves both the problems at the same time.

We believe that the differences and similarities of these
two problems and the assumptions have not been suffi-
ciently well understood to make such a decision now.

Note that most of the IP mobility issues would be mit-
igated if the mobility were able to use the“make-before-
break” concept. While predictive mobility modes exist, typ-
ically depending on them it is not feasible.

We analyze that the main differences between multihom-
ing and mobility are:

• Mobile nodes do not know their new IP address before
they move, while with multihoming the secondary ad-
dress is known from the start, and even renumbering

4We note that there are relatively complex optimizations that allow even
a million sessions per peer host if necessary. For example, after the context
has been exchanged with peer A with addresses A1 and A2, with certain
assumptions new sessions to other peers could reuse the flow label as long
as the new peer’s IP address would not be A1, A2 or any of the other
known addresses.

5We use the term “IP mobility” in a generic sense, not just restricting
to Mobile IPv6.

is a slow process. Thus when a mobile node moves, it
is no longer possible to prepare for the move, and the
connectivity to the old IP address has been lost.

• Mobile nodes move or must be prepared to move much
more frequently (even once a second) than sites renum-
ber (typically at most once a year).

• Mobile node is not expected to return to using the old
address when moving; the multihomed site’s addresses
are going to be valid again after a failure has been cor-
rected.

• Mobile nodes typically have a helper ”home agent”
which is assumed to be always on; there is no such
thing for multihoming. However, there is desire to find
a mobility solution that would not have such a depen-
dency, or at least narrow the responsibilities to just be
a “my current location” referral service.

These seem to have the following implications:

• As HBA address set must be changed if there is any
change in the prefix set, HBAs are not usable for fre-
quent renumbering or mobility. On the other hand a
CGA or CGA+HBA address could possibly be used.

• Shim6 uses locators as ULIDs. These change rapidly,
and applications keep using them even after the IP ad-
dress has been removed from the host. Using a sep-
arate name space would be better for mobility. This
seems to break (1) referral/callback lookup mecha-
nisms (at least forward+reverse DNS no longer works),
and (2) connectivity if the application would want to
talk to a new host which has been given the same IP
address as the already used ULID.

• Shim6 can be designed so that enabling session sur-
vivability requires the nodes to signal the IP addresses
before the addresses are used; such design has a num-
ber of benefits for demultiplexing.

We conclude that these differences seem to be suffi-
ciently constraining not to overload the timing-critical mul-
tihoming with the mobility problem as well. This topic de-
serves research of its own. However, it might still be a good
idea to figure out an alternative to HBAs if HBAs turn out
to be impractical (e.g., due to the IPR concerns).

5.2. IPv6 vs IPv4

As the site multihoming issues apply to both IPv6 and
IPv4, the question is sometimes raised why not design a
solution for both IPv4 and IPv6?

9



The explicit choice has been to avoid having to make
tradeoffs for keeping IPv4 compatibility. The specific rea-
sons have never been documented, but we believe focusing
on IPv6 is reasonable for the following reasons:

• IPv6 has more bits in the address. This allows creat-
ing designs which are impossible or would have to be
done differently with IPv4. For example, HBAs use
the 64-bit interface identifier for obtaining sufficient
cryptographic strength.

• IPv6 has a 20-bit Flow Label. The flow label field
could be used in one of several ways (see Section 4.6)
as a multihoming context tag, requiring no packet over-
head; adding packet overhead complicates fragmenta-
tion/reassembly and Path MTU Discovery, and these
do not work very well in IPv4 as it is [17].

• Small IPv4 sites can multihome using NATs, reducing
their need for a multihoming solution; as IPv6 does
not have NATs, these people have no corresponding
IPv6 multihoming solution though their IPv4 needs
have been at least partially satisfied.

• IPv4 has a lot more legacy; for example, 70% of web
sites are not accessible if a new IP option is added to
the packet [17]; this would constrain the design.

• IPv4 has NATs and they would need to be traversed
and the state kept alive. The design would likely be
quite a bit different.

All of these would be resolvable (if a sufficient alterna-
tive to HBAs can be found) with a more complex design
that does not optimize where IPv6 could be optimized. We
still conclude that it makes sense to focus on the IPv6 de-
signs only, and possibly later create an IPv4 adaptation of
the protocol if deemed appropriate.

5.3. Independence and Traffic Engineering

Shim6 does not solve sites’ desire to be independent
of their ISPs; especially larger sites want to avoid service
provider lock-in, and want to be able to switch providers
without having to renumber their network [24]. In other
words, the sites want provider independent (PI) addresses.

Larger, especially multi-national sites also have desires
to engineer the (incoming) traffic flows. This is required es-
pecially if they have a single address assignment – so they
would like to advertise subprefixes from different geograph-
ical locations; if they have no PI addresses, this should be
no problem. Small sites may want to load-balance the traffic
over several links, but this could be achievable.

We have observed that the pressure has been building
in 2005 in Regional Internet Registries, at least ARIN and

RIPE, to allow PI allocations to a wider audience (e.g., all
the member organizations or any site at all). This has not
been considered scalable as all of these need to be routed
globally [24], but there are also disagreements over whether
that’s actually the case or not.

As unfortunate as it may be for better technical devel-
opment, we assume that sooner or later the allocation poli-
cies will get relaxed, and some sites will get PI addresses.
However, hopefully these come with a sufficient cost to dis-
courage those that don’t really need them. We expect that
small and medium-sized sites could very well use shim6 and
provider-based addressing, and for SME and SOHO enter-
prises shim6 would be an ideal and architecturally sound so-
lution. These small-to-medium sites should not get provider
independent globally routable addresses as it would dis-
courage them from using shim6.

An interesting consideration is the “convergence speed”
of the shim6-based session survivability compared to the
convergence speed of BGP-based multihoming. The most
pessimistic view is that BGP convergence throughout the
Internet could take even a dozen minutes, though closer
in topology the speed is certainly much faster, less than a
minute [16]. If the use of BGP would not be suitably fast to
maintain session survivability, the potential shim6 userbase
could be much larger if it would provide faster convergence.

5.4. Reverse and Forward DNS for Locator
Search

Section 4.1 quickly described applications that do refer-
rals and callbacks. Especially for these applications it is
important to be able to find the other locators, given just
one address.

One proposed way to do so is to look up the PTR record
in the reverse DNS for the address, and look up the ad-
dresses from the forward DNS name the pointer refers to.
[20]

This assumes that forward and reverse DNS trees are
managed sufficiently well, so that all the addresses have a
reverse record that points to a name which lists all the ad-
dresses of a node.

The critical assumptions are therefore:

• The ISPs allow the sites to manage the reverse DNS
entries of the addresses they use (this may be a stretch
for home and similar users), and

• The sites control a provider-independent domain name
under which they can record the hostnames and ad-
dresses (this may be a stretch for home users).

We conclude that reverse and forward lookups for
searching the locators has a chance of succeeding in well-
managed sites, but we fear that sites most interested in

10



shim6 may not be sufficiently well-managed. Luckily
enough, the support for locator search is not needed with
“classical” client-server applications.

5.5. Deployment Considerations

We analyze that the key benefits of shim6 from the de-
ployment perspective are:

• 100% interoperation (but without multihoming bene-
fits) with legacy hosts, i.e., feasible incremental de-
ployment,

• APIs and IP packets do not need to be changed, espe-
cially for simple applications,

• multihoming state does not need to be established im-
mediately, saving in latency and bandwidth,

• does not require any rendezvous servers or other ser-
vices from the network; fully compatible with the end-
to-end paradigm, and

• shim6 ”correspondent node” functionality can be de-
ployed and enabled transparently, implying an easy de-
ployment path for vendors.

6. Conclusions

While the debates in various address allocation fora
about provider independent address allocations for sites still
rage on, shim6 is being designed to provide redundancy in
a scalable manner. It is expected that shim6 will be of most
interest for small and middle-sized sites, but the outcome is
likely linked with the decisions to be made about address
assignments; if getting PI addressing is easier and cheaper
than deploying and maintaining a shim6-based site multi-
homing solution, the sites are going to go for their own
addresses even if that would have serious implications on
interdomain routing scalability.

We described and analyzed the shim6 proposal. In gen-
eral, the design so far seems to be reasonable. There are
obviously many areas which still need work and decisions
how to move forward. The most pressing issues are likely
going to be on address selection and failure detection, the
lack of independence and traffic engineering, and possibly
HBA/CGA IPR issues.

7. Acknowledgements

Marcelo Bagnulo and the anonymous reviewers are
thanked for their review and suggestions for improvement.

References

[1] J. Abley, B. Black, and V. Gill. Goals for IPv6 Site-
Multihoming Architectures. RFC 3582, Aug. 2003.

[2] J. Arkko. Failure Detection and Locator Selection in Multi6.
draft-ietf-shim6-failure-detection-00.txt, Jan. 2005. Work in
progress.

[3] T. Aura. Cryptographically Generated Addresses (CGA).
RFC 3972, Mar. 2005.

[4] M. Bagnulo. Hash Based Addresses (HBA). draft-ietf-
shim6-hba-00.txt, July 2005. Work in progress.

[5] M. Bagnulo and J. Arkko. Functional decomposition of the
M6 protocol. draft-ietf-shim6-functional-dec-00.txt, July
2005. Work in progress.

[6] F. Baker and P. Savola. Ingress Filtering for Multihomed
Networks. RFC 3704, Mar. 2004.

[7] J. N. Chiappa. Endpoints and Endpoint Names: A Proposed
Enhancement to the Internet Architecture, 1999.

[8] R. Draves. Default Address Selection for IPv6. RFC 3484,
Feb. 2003.

[9] F. Gont. TCP’s Reaction to Soft Error. draft-gont-tcpm-tcp-
soft-errors-01.txt, Oct. 2004. Work in progress.

[10] J. Hagino and H. Snyder. IPv6 Multihoming Support at Site
Exit Routers. RFC 3178, Oct. 2001.

[11] C. Huitema, R. Draves, and M. Bagnulo. Address selection
in multihomed environments. draft-huitema-shim6-ingress-
filtering-00.txt, Oct. 2005. Work in progress.

[12] C. Huitema, R. Draves, and M. Bagnulo. Ingress filter-
ing compatibility for IPv6 multihomed sites. draft-huitema-
shim6-ingress-filtering-00.txt, Oct. 2005. Work in progress.

[13] IETF. Better-than-nothing Security (btns) charter.
[14] IETF. Site Multihoming in IPv6 (multi6) charter.
[15] C. Kenjiro and et al. IPv6 Fix: TCP Connection Establish-

ment.
[16] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed

internet routing convergence. In SIGCOMM, pages 175–
187, 2000.

[17] A. Medina, M. Allman, and S. Floyd. Measuring the Evolu-
tion of Transport Protocols in the Internet. Computer Com-
munications Review, Apr. 2005.

[18] R. Moskowitz and P. Nikander. Host Identity Protocol Ar-
chitecture. draft-ietf-hip-arch-03.txt, Aug. 2005. Work in
progress.

[19] P. Nikander. Implications of Identifier / Locator Split.
[20] E. Nordmark. Multi6 Application Referral Issues. draft-ietf-

shim6-app-refer-00.txt, July 2005. Work in progress.
[21] E. Nordmark and M. Bagnulo. Multihoming L3 Shim Ap-

proach. draft-ietf-shim6-l3shim-00.txt, July 2005. Work in
progress.

[22] E. Nordmark and T. Li. Threats Relating to IPv6 Multihom-
ing Solutions. draft-ietf-multi6-multihoming-threats-03.txt,
Jan. 2005. Work in progress.

[23] P. Savola. Examining Site Multihoming in Finnish Net-
works. Master’s thesis, Helsinki University of Technology,
Finland, 2003.

[24] P. Savola and T. Chown. A Survey of IPv6 Site Multihoming
Proposals. In Proceedings of the 8th International Confer-
ence of Telecommunications (ConTEL 2005). IEEE, 2005.

[25] M.-K. Shin, Y.-G. Hong, J. Hagino, P. Savola, and E. Castro.
Application Aspects of IPv6 Transition. RFC 4038, Mar.
2005.

11


